Detecting Document Structure in a Very Large Corpus of UK Financial Reports

نویسندگان

  • Mahmoud El-Haj
  • Paul Rayson
  • Steven Young
  • Martin Walker
چکیده

In this paper we present the evaluation of our automatic methods for detecting and extracting document structure in annual financial reports. The work presented is part of the Corporate Financial Information Environment (CFIE) project in which we are using Natural Language Processing (NLP) techniques to study the causes and consequences of corporate disclosure and financial reporting outcomes. We aim to uncover the determinants of financial reporting quality and the factors that influence the quality of information disclosed to investors beyond the financial statements. The CFIE consists of the supply of information by firms to investors, and the mediating influences of information intermediaries on the timing, relevance and reliability of information available to investors. It is important to compare and contrast specific elements or sections of each annual financial report across our entire corpus rather than working at the full document level. We show that the values of some metrics e.g. readability will vary across sections, thus improving on previous research research based on full texts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How textbooks (and learners) get it wrong: A corpus study of modal auxiliary verbs

Many  elements  contribute  to  the  relative  difficulty  in  acquiring  specific  aspects  of  English  as  a foreign  language  (Goldschneider  &  DeKeyser,  2001).  Modal  auxiliary  verbs  (e.g.  could,  might), are  examples  of  a  structure  that  is  difficult  for  many  learners.  Not  only  are  they  particularly complex  semantically,  but  especially  in  the  Malaysian  context ...

متن کامل

Automatic keyword extraction using Latent Dirichlet Allocation topic modeling: Similarity with golden standard and users' evaluation

Purpose: This study investigates the automatic keyword extraction from the table of contents of Persian e-books in the field of science using LDA topic modeling, evaluating their similarity with golden standard, and users' viewpoints of the model keywords. Methodology: This is a mixed text-mining research in which LDA topic modeling is used to extract keywords from the table of contents of sci...

متن کامل

Detecting Corporate Financial Fraud using Beneish M-Score Model

Detecting financial fraud is an important issue and ignoring this issue may cause financial and non-financial losses to individuals and organizations. The aim of this study is to test the ability of Beneish M-Score Model for detecting financial fraud among companies listed on Tehran stock exchange. The research sample consists of 137 companies listed on Tehran Stock Exchange for a period of 11 ...

متن کامل

Towards a Multilingual Financial Narrative Processing System

Large scale financial narrative processing for UK annual reports has only become possible in the last few years with our prior work on automatically understanding and extracting the structure of unstructured PDF glossy reports. This has levelled the playing field somewhat relative to US research where annual reports (10-K Forms) have a rigid structure imposed on them by legislation and are subm...

متن کامل

روش جدید متن‌کاوی برای استخراج اطلاعات زمینه کاربر به‌منظور بهبود رتبه‌بندی نتایج موتور جستجو

Today, the importance of text processing and its usages is well known among researchers and students. The amount of textual, documental materials increase day by day. So we need useful ways to save them and retrieve information from these materials. For example, search engines such as Google, Yahoo, Bing and etc. need to read so many web documents and retrieve the most similar ones to the user ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014