Detecting Document Structure in a Very Large Corpus of UK Financial Reports
نویسندگان
چکیده
In this paper we present the evaluation of our automatic methods for detecting and extracting document structure in annual financial reports. The work presented is part of the Corporate Financial Information Environment (CFIE) project in which we are using Natural Language Processing (NLP) techniques to study the causes and consequences of corporate disclosure and financial reporting outcomes. We aim to uncover the determinants of financial reporting quality and the factors that influence the quality of information disclosed to investors beyond the financial statements. The CFIE consists of the supply of information by firms to investors, and the mediating influences of information intermediaries on the timing, relevance and reliability of information available to investors. It is important to compare and contrast specific elements or sections of each annual financial report across our entire corpus rather than working at the full document level. We show that the values of some metrics e.g. readability will vary across sections, thus improving on previous research research based on full texts.
منابع مشابه
How textbooks (and learners) get it wrong: A corpus study of modal auxiliary verbs
Many elements contribute to the relative difficulty in acquiring specific aspects of English as a foreign language (Goldschneider & DeKeyser, 2001). Modal auxiliary verbs (e.g. could, might), are examples of a structure that is difficult for many learners. Not only are they particularly complex semantically, but especially in the Malaysian context ...
متن کاملAutomatic keyword extraction using Latent Dirichlet Allocation topic modeling: Similarity with golden standard and users' evaluation
Purpose: This study investigates the automatic keyword extraction from the table of contents of Persian e-books in the field of science using LDA topic modeling, evaluating their similarity with golden standard, and users' viewpoints of the model keywords. Methodology: This is a mixed text-mining research in which LDA topic modeling is used to extract keywords from the table of contents of sci...
متن کاملDetecting Corporate Financial Fraud using Beneish M-Score Model
Detecting financial fraud is an important issue and ignoring this issue may cause financial and non-financial losses to individuals and organizations. The aim of this study is to test the ability of Beneish M-Score Model for detecting financial fraud among companies listed on Tehran stock exchange. The research sample consists of 137 companies listed on Tehran Stock Exchange for a period of 11 ...
متن کاملTowards a Multilingual Financial Narrative Processing System
Large scale financial narrative processing for UK annual reports has only become possible in the last few years with our prior work on automatically understanding and extracting the structure of unstructured PDF glossy reports. This has levelled the playing field somewhat relative to US research where annual reports (10-K Forms) have a rigid structure imposed on them by legislation and are subm...
متن کاملروش جدید متنکاوی برای استخراج اطلاعات زمینه کاربر بهمنظور بهبود رتبهبندی نتایج موتور جستجو
Today, the importance of text processing and its usages is well known among researchers and students. The amount of textual, documental materials increase day by day. So we need useful ways to save them and retrieve information from these materials. For example, search engines such as Google, Yahoo, Bing and etc. need to read so many web documents and retrieve the most similar ones to the user ...
متن کامل